WATER QUALITY SURVEY OF THE PATUXENT RIVER 1969 DATA REPORT Number 17 Annapolis Field Office Region III Environmental Protection Agency ## Annapolis Field Office Region III Environmental Protection Agency 1969 Data Report Number 17 WATER QUALITY SURVEY OF THE PATUXENT RIVER ### Staff James W. Marks, Chief, Laboratory Section Orterio Villa, Jr., Chemist Anna R. Favorite, Statistician Evelyn P. McPherson, Technician ## TABLE OF CONTENTS | | P_{age} | |-----|---------------------| | | | | I | INTRODUCTION 1 | | II | STATION LOCATIONS 6 | | III | SURVEY RESULTS 7 | | IV | MAPappendix i | #### I INTRODUCTION ### A. Purpose and Scope During the year of 1969 the Annapolis Field Office, Region III, Environmental Protection Agency continued surveys of the estuary portion of the Patuxent River. The purpose of the surveys was to continue upgrading data from previous years and model verification. ### B. General Remarks The Patuxent estuary was sampled six times during the year. Monthly sample runs were made during the summer months of June through August. ### C. Sampling Procedures Samples for chemical analysis were obtained by dipping a plastic bucket into the river water with a minimum of agitation. The water sample was then transferred to a plastic one-quart cubitainer. Dissolved oxygen (DO) samples were obtained by siphoning from the bucket through plastic tubing extended to the bottom of a conventional 300 ml DO bottle. The bottle was overfilled twice without excessive agitation, and the DO fixed immediately. All samples were stored on ice. Analysis was started immediately on return to the Annapolis Field Office, generally within two hours of sampling. ## D. Measured Parameters and Analytical Methods - 1. Water temperature was determined using a mercury thermometer inserted into the sample container immediately upon collection. - 2. Water temperature was read from a Beckman Salinometer. - 3. Conductivity was read from a calibrated Beckman Salinometer. - 4. Salinity was determined with a calibrated Beckman Salinometer. ### 5. Total Phosphorus Reference: Menzel, D.W. and Corwin, N., 1965. The Measurement of Total Phosphorus in Seawater Based on the Liberation of Organically Bound Fractions by Persulfate Oxidation. Limonology and Oceanography, 10: 280-282. Murphy, J. and Riley, J.P., 1962. A Modified Single Solution Method for the Determination of Phosphate in Natural Waters. Analytica Chimica Acta, 27: 31-36. Total Phosphorus was determined after persulfate oxidation of the sample in an autoclave at 15 psi for 30 minutes. The resultant ortho-phosphate was then determined colorimetrically as the molybdenum-blue complex with the optical density measured at 882 mm. ## 6. Inorganic Phosphorus Reference: Murphy, J. and Riley, J.P., 1962. A Modified Single Solution Method for the Determination of Phosphate in Natural Waters. Analytica Chimica Acta, 27: 31-36. Inorganic Phosphorus was determined by automation of the above procedure using the Technicon "AutoAnalyzer." The molybdenum-blue complex formed was determined colorimetrically with the optical density measured at $885~\text{m}\mu$. ### 7. Total Kjeldahl Nitrogen Reference: Standard Methods for the Examination of Water and Wastewater, 12 ed., 1965. Total Kjeldahl Nitrogen includes ammonia and organic nitrogen and was determined by the standard micro-kjeldahl procedure. The sample was digested in the presence of strong acid to convert the organic nitrogen to ammonia. The ammonia was then distilled, collected in boric acid solution, nesslerized and determined colorimetrically. #### 8. Nitrate and Nitrite Reference: A Practical Handbook of Seawater Analysis, J.D.H. Strickland and T.R. Parsons, Bulletin 167, Fisheries Reasearch Board of Canada, Ottawa, Canada. 1968. Nitrate plus nitrite nitrogen was determined by automation of the above procedure using the Technicon "Auto-Analyzer." This procedure utilizes cadmium reduction of nitrate to nitrite and subsequent diazotization with sulfanilamide and N-(1-naphthyl)-ethylenediamine dihydrochloride with the optical density measured at 540 m μ . The results were reported as nitrogen. #### 9. Ammonia Reference: Southeast Water Laboratory, FWQA, Methodology for the colorimetric determination of ammonia by the phenol-hypochlorite reaction. FWPCA Methods for Chemical Analysis of Water and Wastes, November 1969. Ammonia nitrogen was determined by automation of the phenol-hypochlorite procedure as described in the Southeast Water Laboratory Methodology and later adopted as the official FWPCA procedure. The intensity of the indophenol blue color, formed by the reaction of ammonia with alkaline phenol-hypochlorite, was increased using sodium nitroprusside as an intensifying agent. The optical density was measured at 630 mµ and calculated as NH₃-N. #### 10. Chlorophyll a Reference: A Practical Handbook of Seawater Analysis, J.D.H. Strickland and T.R. Parsons, Bulletin 167, Fisheries Reasearch Board of Canada, Ottawa, Canada. 1968. Chlorophyll <u>a</u> was determined by extraction of millipore filtered samples in 90% acetone and read spectrophotometrically. 11. Turbidity was determined with a Hach photoelectric nephelometer, calibrated in Jackson Turbidity Units. ### 12. Dissolved Oxygen Reference: Standard Methods for the Examination of Water and Wastewater, 12 ed., 1965. Dissolved Oxygen was determined by the azide modification of the basic Winkler method with the titration done potentiometrically with a Fisher automatic "titralyzer." # II STATION LOCATIONS | Station | Location | |---------|--| | | | | E 1 | Route 50 Bridge | | E 2 | Queen Anne's Bridge | | E 3 | Bell's Junk Yard | | E 4 | Trailer Court | | E 5 | Wayson's Corner, Route 4 Bridge | | E 5A | Western Branch | | E 6 | Mouth of Western Branch | | E 6A | Middle of Jug Bay | | E 7 | Mouth of Lyon's Creek | | E 8 | Nottingham | | E 9 | Lower Marlboro, opposite wharf | | E 10 | High Power Lines | | E 11 | Halfway between Trueman Point and Deep Landing | | E 12 | 500 yards east of PEPCO Canal | | E 13 | Chalk Point | | E 14 | Benedict Bridge Channel | | E 15 | Sheridan Point, Buoy 21 | III SURVEY RESULTS 1969 PATUXENT ESTUARY ANNAPOLIS FIELD OFFICE | Sample
Number | Date
Sample
Taken | Time
Sample
Taken | Water
Temp
°C | Secchi
Disk
Inches | Conduc-
tivity
µmhos | Salinity
°/oo | Gage
Height
Feet | Total P
PO _{li}
mg/l | Inorganic P
PO _l
mg/l | TKN
mg/l N | NO ₂ +NO ₃
mg/1
NO ₃ -N | NH3
mg/1 N | Chloro-
phyll <u>a</u>
µg/l | Tur-
b idity
JTU | DO
mg/l | |--|--|--|-------------------------------|--------------------------|----------------------------|-------------------------|----------------------------------|---|--|----------------------------------|--|---|---|-------------------------------|--| | 69020301
060901
070201
082501
102701
121801 | 2-03
6-09
7-02
8-25
10-27
12-18 | 0945
0945
0915
1045
0925
0910 | 4.5
20
22.9
20
10 | | | Station E 1
1.1
0 | - U.S. F
4.50
3.70
3.39 | 2.286
3.632
5.206
2.530
4.85
3.08 | 1.735 | 1.883
2.843
1.744
1.413 | 1.224
1.905
3.496
1.75
1.75 | 1.160
1.033
.780
.77
1.95
2.27 | 2.25
6.75
11.25
6.00
ND
7.50 | 17.5
72 | 10.37
4.15
2.62
5.75
7.07
11.32 | | 69020302
060902
070202
082502
102702
121802 | 2-03
6-09
7-02
8-25
10-27
12-18 | 1010
1145
0850
1025
1055
1035 | 5
21
23
19.5
9.5 | | | Station E 2 | - Queen | Anne's Br
1.429
3.027
3.619
2.130
4.74
2.70 | 3.260
>3.0
2.28 | 1.463
1.529
.943
1.250 | .997
2.543
3.248
1.64
> 1.80
1.04 | .835
.948
.360
.73
1.74
1.45 | 1.50
4.50
9.75
3.75
ND
3.75 | 29
25 | 10.51
4.50
4.22
6.13
LA
11.58 | | 69020303
060903
070203
082503
102703
121803 | 2-03
6-09
7-02
8-25
10-27
12-18 | 1040
1120
0830
1010
1115
1050 | 4.5
20.5
27
20
9 | | | Station E 3 | - Bell's | Junk Yard
1.771
2.368
2.984
2.032
4.31
2.42 | -
2.633
>3.0
2.00 | 1.790
1.674
.551
1.069 | .906
2.270
2.744
1.65
> 1.80
.969 | .923
.585
.116
.64
1.38
1.46 | 5.25
7.50
11.25
3.00
MD
6.00 | 36
24 | 10.27
4.88
4.99
6.09
7.94
11.61 | LA Laboratory accident ND Not detectable | Sample
Number | Date
Sample
Taken | Time
Sample
Taken | Water
Temp
°C | Secchi
Disk
Inches | Conduc-
tivity
umhos | Salinity
°/oo | Gage
Height
Feet | Total P
PO _L
mg/l | Inorganic P PO, mg/1 | TKN
mg/l N | NO ₂ +NO ₃
mg/l
NO ₃ -N | NH3
mg/l N | Chloro-
phyll <u>a</u>
µg/l | Tur-
bidity
JTU | DO
mg/l | |--|--|--|-------------------------------------|--------------------------|----------------------------|------------------|------------------------|---|-----------------------|----------------------------------|--|---|---|-----------------------|--| | 69020304
060904
070204
082504
102704
121804 | 2-03
6-09
7-02
8-25
10-27
12-18 | 1055
1110
0800
1000
1135
1110 | 4.5
21
27
20.5
11 | | | Station E 4 | - Traile | .892
2.638
1.725
1.395
2.82
2.09 | 1.299
2.12
1.64 | 1.265
1.773
1.273
1.456 | 1.302
2.230
2.212
1.22
1.75
1.01 | .648
.693
.252
.39
.63 | 9.75
9.75
7.50
3.75
ND
3.75 | 14
27 | 8.85
4.42
3.87
5.50
8.41
11.32 | | 69020305
060905
070205
082505
102705
121805 | 2-03
6-09
7-02
8-25
10-27
12-18 | 1140
1045
0730
0945
1015 | 5
21.5
26
21
9.5
1 | 14 | | Station E 5 | - Route | 4 Bridge,
1.543
1.751
1.196
1.514
3.73
1.92 | .866
2.73
1.26 | 1.222
1.291
.858
1.238 | 1.052
1.954
2.720
1.26
1.66
1.18 | 1.025
.660
.230
.40
.87
1.96 | 3.00
5.25
5.25
8.25
3.75
3.75 | 25
21 | 9.61
3.97
3.20
5.21
7.94
11.03 | | 69020306
060906
070206
082506
102706
121806 | 2-03
6-09
7-02
8-25
10-27
12-18 | 1255
1105
0745
1000
1035
1035 | 2.4
22
22
21
9.5
1.5 | 33
13 | | Station E 5. | A – Weste | 290
-844
-693
-581
-858
1-53 | .188
.400
1.11 | 1.049
.756
1.170
.400 | .548
1.006
2.212
.20
.49 | .145
.423
.030
.13
.17
.873 | 2.25
6.00
10.50
3.75
MD
3.00 | 12
19 | 10.61
3.61
6.33
4.48
8.70
11.24 | | 69020307
060907
070207
082507
102707
121807 | 2-03
6-09
7-02
8-25
10-27
12-18 | 1245
1110
0750
1005
1045
1040 | 2.5
22.5
28
22
10
1 | 27
18 | | Station E 6 | - Mouth | of Westerr
.994
.688
.488
1.006
2.20
1.49 | .125
1.33
.915 | 1.049
LA
.790
.806 | .937
.727
.006
.87
1.34
.885 | .733
.343
.010
.35
.42
.820 | 4.50
14.25
16.50
8.25
.75
6.75 | 15
17.5 | 9.74
3.38
6.60
4.45
7.11
11.20 | | 69020308
060908
070208
082508
102708
121808 | 2-03
6-09
7-02
8-25
10-27
12-18 | 1235
1121
0805
1020
1058
1050 | 2.4
24
28
23.5
11 | 25
20 | | Station E 6 | A - Middl | | .095
.408
.625 | .926
.802
.886
.781 | .898
.371
ND
.46
.85 | .833
.190
.005
.23
.28 | 2.25
44.25
41.25
6.75
24.25
5.25 | 14.5
27.5 | 9.34
5.34
6.79
3.93
10.09
11.55 | LA Laboratory accident ND Not detectable | Sample
Number | Date
Sample
Taken | Time
Sample
Taken | Water
Temp
°C | Secchi
Disk
Inches | Conduc-
tivity
umhos | Salinity
°/oo | Gage
Height
Feet | Total P
PO _l
mg/l | Inorganic P
PO _l
mg/l | TKN
mg/l N | NO ₂ +NO ₃
mg/1
NO ₃ -N | NH
mg/1 N | Chloro-
phyll <u>a</u>
µg/l | Tur-
bidity
JTU | DO
mg/1 | |--|--|--|------------------------------------|--------------------------|----------------------------|-----------------------------------|------------------------|--|--|--|--|--|--|-----------------------|--| | 69020309
060909
070209
082509
102709
121809 | 2-03
6-09
7-02
8-25
10-27
12-18 | 1215
1128
0810
1035
1105
1100 | 2.3
24
28
23.5
11 | 18 [°]
20 | | Station E 7 | - Mouth | of Lyon's | .072
.152
.660 | 1.068
.640
.830
.756 | .888
.340
ND
.35
.39
.864 | .663
.310
.008
.21
.29
.476 | 6.75
54.00
51.75
8.25
22.50
16.50 | 23
34 | 9.66
5.86
6.34
3.96
11.13
10.98 | | 69020310
060910
070210
082510
102710
121810 | 2-03
6-09
7-02
8-25
10-27
12-18 | 1140
1145
0830
1050
1120
1115 | 2
24
28
25
12 | 12
18 | | 13.9
2.5 | - Nottin | gham815398438624539 1.28 | .116
.145
.625 | . 864
. 849
. 608
. 800
. 346 | .781
.163
ND
.36
.12
.802 | .545
.218
.026
.23
.08
.476 | 6.75
41.25
61.50
15.75
9.00
30.00 | 35
18 | 10.36
6.64
5.66
4.63
9.65
10.89 | | 69020311
060911
070211
082511
102711
121811 | 2-03
6-09
7-02
8-25
10-27
12-18 | 1125
1205
0850
1115
1140
1135 | 2
24.5
28
27
13
2 | 14
18 | .6 | Station E 9 | - Lower | Marlboro,
.405
.292
.447
.612
.309 | opposite wharf | .883
.750
.699
.925 | .698
.055
ND
.40
.C3 | .495
.173
ND
.18
.05
.489 | 5.25
33.00
52.50
20.25
9.00
15.00 | 25
16.5 | 10.25
6.21
6.23
5.19
8.59
10.61 | | 69020312
060912
070212
082512
102712
121812 | 2-03
6-09
7-02
8-25
10-27
12-18 | 1115
1220
0915
1135
1200
1155 | 2.2
25
28
27.5
13.5 | 14
22 | 2.9 | Station E 10
1.0
8.6
6.7 | O - High | Power Line
.226
.282
.370
.560
.251 | .149
.117
.223 | .654
.558
.727
1.200 | .581
.018
ND
.33
.03
.724 | .533
.158
MD
.21
.06
.474 | 3.75
29.25
133.50
13.50
.75
LA | 17
12 | 10.09
6.76
7.37
5.47
8.46
10.85 | | 69020313
060913
070213
082513
102713
121813 | 2-03
6-09
7-02
8-25
10-27
12-18 | 1110
1230
0925
1145
1210
1210 | 2.6
25.5
29
28
14
2 | 19
30 | 4.1 | Station E 1: 2.0 9.8 8.8 | l <u>- Halîw</u> | 211
.248
.371
.304
.279
.277 | .166
.078
.150 | . and Deep
.512
.413
.574
.650 | Landing
.611
ND
ND
.21
.04
.452 | .053
ND
.26
.04
.305 | ND
27.75
47.75
15.00
3.75
11.25 | 12.5
12 | 10.00
6.76
6.89
6.14
8.57
10.93 | LA Laboratory accident ND Not detectable | Sample
Number | Date
Sample
Taken | Time
Sample
Taken | Water
Temp
*C | Secchi
Disk
Inches | Conduc-
tivity
µmhos | Salinity
*/oo | Gage
Height
Feet | Total P
PO _l
mg/l | Inorganic P PO _{li} mg/l | TKN
mg/1 N | NO ₂ +NO ₃
mg/1
NO ₃ -N | NH ₃ | Chloro-
phyll a
µg/l | Tur-
bidity
JTU | DO
mg/1 | |--|--|--|--------------------------------------|--------------------------|----------------------------|-------------------------------------|------------------------|---|-----------------------------------|-------------------------------|--|------------------------------------|--|-----------------------|---| | 69020314
060914
070214
082514
102714
121814 | 2-03
6-09
7-02
8-25
10-27
12-18 | 1105
1245
0930
1155
1230
1215 | 3.5
25.5
29
28.5
14
2 | 5Ħ
5Ħ | 6.0 | Station E 12
3.6
11.6
11.3 | e – 500 y | .198
.258
.392
.405
.278 | .171
.102
.128 | .691
.401
.568
1.244 | .153
ND
ND
.10
.005
.293 | .135
.415
.005
.10
.03 | ND
16.50
51.00
6.75
.75
19.50 | 13
8.4 | 9.69
6.76
6.17
7.60
8.76
11.19 | | 69020315
060915
070215
082515
102715
121815 | 2-03
6-09
7-02
8-25
10-27
12-18 | 1055
1250
0940
1205
1240
1225 | 3.7
29
28.5
14
2 | 28
42 | 9.4 | Station E 13
6.9
12.5
11.7 | 3 - Chalk | 201
.201
.224
.415
.545
.278
.221 | .162
.127
.121 | .593
.413
.614
.800 | .375
ND
ND
.02
.005
.336 | .118
.278
.008
.04
.04 | 4.50
15.75
32.25
12.00
.75
2.25 | 10
6.4 | 9.69
6.63
6.38
9.51
8.91
11.25 | | 69020316
060916
070216
082516
102716
121816 | 2-03
6-09
7-02
8-25
10-27
12-18 | 1045
1305
0950
1220
1250
1235 | 3.5
24
28.5
28
14
2 | 36
46 | 10.6 | Station E 14
8.1
12.8
12.1 | : - Be ned | .139
.229
.332
.389
.251 | .150
.137
.068 | . 186
. 149
. 456 | .382
ND
ND
.02
.005 | .073
.343
.005
.14
.03 | 9.00
17.25
30.00
12.00
3.75
22.50 | 8
7 | 9.85
6.83
6.21
7.06
8.99
11.55 | | 69020317
060917
070217
082517
102717 | 2-03
6-09
7-02
8-25
10-27 | 1030
1320
1015
1230
1305 | 2.1
28
28
14 | 75
46 | . 11.5 | Station E 15
9.3
13.8
13.7 | - Sheri | dan Point,
.121
.187
.540
.417
.241 | .231
.127 | .716
.401
1.131
.500 | .265
ND
ND
.03
ND | .043
.423
.063
.05 | 8.25
14.25
63.75
21.00
3.75 | 4.5
3.2 | 10.13
6.44
8.74
7.58
9.14 | ND Not detectable